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ABSTRACT 

In this note we study an analogue of Vinogradov's uniform distribution result 
for prime numbers in the context of hyperbolic flows and their closed orbits. We 
obtain estimates for the Hausdorff dimension of certain exceptional sets. 

§0. Introduction 

For a sequence of real numbers in the unit interval there exists a natural idea 

of the sequence being uniformly distributed. If 0 < a < 1 is irrational then the 

sequence om (mod 1) is easily shown to be uniformly distributed, where n runs 

through the natural numbers [14]. In 1948 Vinogradov proved the harder result 

that ap (mod 1) is uniformly distributed where p runs through the prime 

numbers [24]. This gives information on the distribution of the primes (Dirich- 

let's theorem can be interpreted as a result on the distribution of ( r / s ) p  (rood 1) 

over the rationals in the unit interval with denominator  s, when r / s  is a rational). 

The main purpose of this paper is to study the length spectrum of closed orbits 

for certain dynamical systems, motivated by Vinogradov's result and the close 

prime-closed orbit correspondence exhibited in [15]. 

In section 1 we present Vinogradov's theorem. The proof given is not 

essentially new (cf. [23], [7]) but is included for completeness, in the absence of 

an appropriate reference. 

In section 2 we consider the size of the exceptional set of a for which the Weyl 

sums don't  converge at certain rates. This material is independent of later 

sections, although it serves to motivate the formulation of subsequent results, 

and is included for its independent interest. 

In the final section we come to the crux of the paper. In this section we replace 
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the primes by the norms of closed orbits for Axiom A flows (this is precisely the 

correspondence between primes and closed orbits occurring in prime orbit 

theorems [15]). We then consider the size of the exceptional set of 0 < a < 1 for 

which a(Norms) ( m o d  1) is not uniformly distributed. We also take the 

opportunity to present additional results for closed geodesics on compact 

surfaces of curvature - 1. 

This work was completed at I.H.E.S. with their support. I would like to thank 

W. Parry for numerous invaluable discussions. I am also grateful to C. 

MacMullen and D. Ruelle for some useful comments. 

§1. Uniform distribution and prime numbers 

Let (xn)~=~ be a sequence in the interval [0,1] and let/zN be the (purely atomic) 

probability measure constructed by equidistributing measure over the first N 

terms in the sequence, i.e. /~N = ( I / N ) E ~ ,  8x, where ~Sx. is the probability 

measure consisting of a single atom at x,. The sequence (xn),~ is then called 

uniformly distributed if /~N converges to Lebesgue measure in the weak* 

topology. In particular, this is equivalent to f~ e(kx)d#~(x)--+O as N ~  + oo, for 

each k E Z\{0}, where we have used the notation e(z)=exp27riz. (This is 

exactly Weyl's criterion [14].) 
We use f(t)'~ g(t) (or sometimes f( t)= O(g(t))) to denote that f(t)/g(t) is 

bounded for large t > 0). 

THEOREM 1. (Vinogradov) Let (Pn)~=~ be the sequence of prime numbers and 
let 0 <  a < 1 be irrational, then (apn (rood 1))~.j is uniformly distributed. 

PROOF. Given r > 0 ,  choose a,q to be coprime positive integers (i.e. 

(a,p)  = 1) such that la  - a/ql< llzq and q =< 7. We can write a = a/q + O/rq 
with 10l<  1 (cf. [181). 

We require estimates on the partial sums s(N) = Ep.~Ne(ap,) for N > 0, so in 

particular we will take ¢ = N e x p -  (log N) ~t6. 

Case L 1 < q <= (log N) 2°. 

Divide [1,N] into intervals of length A =N/exp(logN) TM. For a prime 

1 =< p _-< N assume p lies in one such interval [ N t -  A, Nt]. Then 

Ip(a - a / q ) -  ONi/q~" 14101. Ip - N ,  [/qr 

<-_I.A/1.~" 

A exp(log N)~I6/N 
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and the final term tends to zero as N increases• Therefore 

since the summation is over less than A terms and ONJqr is a common 

argument to these terms• 

Estimate 1. Let l< - l<q ,  ( l ,q )=l ,  q_-<(IogN) ~° then there exists C > O  

such that 

lr(N, 1, q) = ~r(N)/dp(q) + 0 (N exp - C(log N)  m) 

where 7r(N) = Card{p. [p. _-< N}, 

lr(N,l,q) = Card{p~ <_- N t p =  ! (mod q)}, 

~b(q)= Card{l_-< l =< q I ( / ,q )=  1} 

(cf. [6], p. 133). 

We use the above estimate as follows: if 

s, = ~ e p. 
N I - A < p n ~ - N  I 

then 

js, ] ,.~,~-, q . l  [Tr(N,,l,q)-~'(N,-A,l,q)] 
( l • q )  = I 

(1.1) "~ [,~,~ e (q. l) [ ~r(N,)-~(q) ~r(N, - A)+ Nexp- C(log N,) ''~ ] 
(Lq)=l 

• L d~ (q) - A )] + qN exp - C(log N,) ',2. 
(l,q)=t 

Estimate 2. For e > O , a > O w e h a v e  

a) (cf. t111, p. 1). 
(l.q)~ I 

Applying Estimate 2 to (1.1) and recalling the hypothesis q _-< (log N)  2° gives 

I s~ [<~ q~ ( 1r (Nl) - It(N1 - A ) ) + N(log N)2°exp - C(log N,) ''2 
\ ,/,(q) 

"~ q,  ( ~r ( N , ) -  ~ ' ( N , -  A ) )+  N(log N)2°exp - C[iog N - (log N ) " ]  m 
~b(q) 

(since log N, ~> log A ~> log N - (log N)'~4). 
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We can now sum over the N / A  partial sums of the form s~ to get 

S ( N )  ~ q ~lr(N)/dJ (q) + (log N) 2° exp - C[log N - (log g)'/4] ''2 

and so 

S ( N ) / z r ( N )  ~ q"/~b(q) + (log N)  2°÷~. exp((log N)  TM - C[log N - (log N)"4]"2). 

Estimate 3. For e > 0 ,  q'/d~(q)---~O as q---~ +oo (cf. [10], §18.4). 

Therefore  we have S(N)/~r(N)---~O as N--* + ~  since q must take larger and 

larger values. 

Case II. (log N) 2° < q < ~" = N exp - (log N)  U6. 

We can derive the necessary bounds from the following estimate. 

Estimate 4. Assume [a - a/q [ < 1/q 2 then 

S ( N )  = ~ e(apn) ~ (Nq -"2 + N 4/5 + N~/2q"2)(log N) 4 
pn~N 

(cf. [6], p. 143). 

The above estimate, together with the hypothesis on q, immediately gives 

S ( N )  (q-I/2 + N-,,5 + N-I/2q .,2) (log N)5 
N/log N "~ 

~ 0  as N ~  +oo. 

Of course, since N/log N = O(zr (N) )  by the prime number theorem we have 

that in either of the two cases S(N)I~r(N)---~O as N--* +oo and thus by Weyl's 

criterion (apn (mod 1))~=~ is uniformly distributed. 

§2. Rates o| convergence 

From the proof of Theorem 1 it is simple to see that the Weyl sum S(N) /~r (N)  

satisfies S(N) /~r(N)  = O((log N)-k), for any k > 0. (To see this replace (log N)  2° 

by (log N)  2k in the bounds on the two cases, k > 10.) However,  the second term 

on the right-hand side of Estimate 4 means that the fastest rate of convergence, 

for any choice of a, which can be expected from this proof is S ( N ) / ~ r ( N ) ~  

(log N)SN -'/5. For a given 0 < 8-< 1/5 and irrational a, Estimate 4 gives that 

S(N) /Tr (N)  ~ (log N)~N -~ provided the following condition is satisfied: For all 

sufficiently large N there exists N 28 < q < N I-2~ and 1 < p < q, (p,q)  = 1 with 

l a - p /q  I < 1/q 2. Using work of W. Schmidt [19] it can be shown that for any 
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given 0 < 8 =< 1/5 the above condition is satisfied for almost all 0 < a < 1 (with 

respect to Lebesgue measure). 

In order to describe the "size" of sets of zero Lebesgue measure it is 

appropriate to introduce the notion of Hausdorff dimension. Let 8,p > 0 and let 

S C_ R and define m~(S) = inf~ XcE~ (diam C) p, where ~ runs over all countable 

covers of S by closed sets of diameter less than 8. Let HP(S) = lim~_om~(S), 
then there exists 1 >/3  > 0  such that H~(S) is infinite for # >/3  and zero for 

O </3. We call/3 the Hausdorff dimension of 8 and denote it by HD(S) (cf. [3]). 
A set of fractional Hausdortt dimension has zero Lebesgue measure and a 

countable union of points has zero Hausdorff dimension. 

PROPOSITION 1. Let 0 < y < [3 and let 

E = {a 13 arbitrarily large N such that VN ~ <= q <- N ~, 
(p,q)= 1,p < q, la - p / q l >  1/q 2} 

then H D ( E ) =  < 2y / (y  +/3). 

PROOF. L e t  

N~ 

EN = U ~J (p/q -1/q2,p/q + l/q2), 
q = N  ~" p~l 

(p.q)=l 

then we can write 

E = N  UE . 
M = !  N = M  

It is convenient to introduce Ford circles (Fig. 1). These are circles in the upper 

half plane tangent to the real line at p/q, (p ,q )=  1, q => 1 and of diameter 1/q ~ 
(cf. I181, I221). 

Furthermore, the interiors of two such circles never intersect and circles 

corresponding to p/q and polqo touch if and only if Ipqo-poql= 1. 
The set EN is the projection onto R of those circles corresponding to 

N" _-<q _-<N& 

Step I. Assume ql < N ~, where N > 0. By considering the relative sizes of 

any three mutually tangent Ford circles we can choose C > 0 (independent of 

q , y , N )  such that the nearest q-circle to the base of a q~-circle, with N ~ =< q = 

N ~, is based at a distance 1/qql <-_-C/q~N ~ (Fig. 2). 

In particular, the intervals about PdqJ in EN are covered by intervals 

(pdq~- C/q~N ~, Pdql + C/q~N ~). 
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0 ' ' ' ~ ~ ! 
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qqt 

Fig. I. 

Fig. 2. 

Step 2. We shall now show that intervals of the above form cover all of EN. 

Take q~ = [N ~] - 1 and consider (one side of) a particular q~-circle. Choose the 

smallest q-circle touching both R and this q~-circle subject to the condition 

N ~ _-< q =< N ~. Next inductively choose successive q'-circles of increasing diame- 

ter with q~ =< q'=< N a such that each new circle touches the previous circle and 

the original qt-circle. Continue until it becomes impossible to satisfy q ' >  q~ (Fig. 

3). 



VOI. 55, 1986 UNIFORM DISTRIBUTION FOR PRIMES 205 

/ 1_ ~ 1 ) \ i / ` /  successive q' circles 

\ / . I  i x  

Fig. 3. 

\ 
\ 

\ 
\ 

l 
I 

I 
l 

/ 
/ 

/ 
/ 

It is obvious that EN N(p,/q,-llq~,p,/q,+llq{) is covered by 

(p,/q, - C/q2N~,p,/q, + C/q,N~'). 

Step 3. We can now repeat the above argument in step 2 with q, = 

[N "] - 2 , [ N  "] - 3  ..... 2 to deduce that EN is covered by intervals of the form 

(p,/q~- C/q,N,  pdq, + C/q~N) where Pt < q,, (P,,q,) = 1. 

Step 4. Given e >0 ,  choose M sufficiently large that the intervals 

(p,/ql - C/q,NO, p,/q, + C / q , N  ~) satisfying q~ =< N ", (p,,q,) = 1, p, < q, form an 
e-covering for EN (for any N - M). Denote the covering for EN by ~N, then for 

2C )P 
(diam C')~ = ~'~ ~'~ 

C'6f_~(2 N ql<=NV(pl.ql)=l 
Pl~ql 

12C~ p ~ ,-o (2.1) <-_ k - ~  ] q,~N q , 

<= ( 2-~o ) ° N ,  . N('-o',. 

If p > (23' + 1)/(3' +/3) then the exponent of N in (2.1) is less than - 1. If we 
write E =/"i~=t U~=,,EN then cg = UN>, cgN is obviously an e-cover and 

Y-c~,(diam C) ° <- Y.N-=,, l /N" < + m, for e = P(3' +/3) - 23' > 1 (by comparison 
with the Riemann zeta function). 

This shows that l I D ( E ) =  (23" + 1)/(3' +/3). However, we can scale 3" and/3 by 
the same factor without changing the Hausdorff dimension of E. This proves the 
proposition. 

l~p_--__O: 
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i j 

horocycle / ~,/ 
r"  

Fig. 4. 

2,1) 

By combining the above proposition with earlier remarks we get the following 

PROPOSITION 2. For any k > 0, S(N) / z r (N)  ~ (log N)  -k. Furthermore, the 

union of all irrational 0 < a < 1 which do not satis[y S ( N ) / 1 r ( N ) ~  N -6 (for 

given 0 < 8 _-< 1/5) has Hausdorff dimension at most 1 - 48. 

REMARK. Proposition 1 can be interpreted geometrically for the modular 

surface as follows: Given 7/> 0 let G~ be the union of all geodesics coming from 

infinity which, after first crossing the horocycle through the ramification point of 

order 2 at time t = 0, stay on the cusp side of the horocycle for stretches 

t~ <_- t _-< (1 + ~/)t~, where t~ > 0 are arbitrarily large. Then the Hausdorff dimen- 

sion of G,  is bounded above by 1 + 1/(1 + r//2) (cf. [22]). 

REMARK. It has been pointed out to the author that an alternative derivation 

of Proposition 1 is possible based on the work of Besicovitch (J. London Math. 

Soc. 9 (1934), 126-131). 

§3. Axiom A and geodesic flows 

Let ~b be a C~-flow on a compact manifold M. A compact invariant set A 

containing no fixed points is called hyperbolic if the unit tangent bundle over A 

splits into the Whitney sum of three D~b-invariant continuous sub-bundles 

TAM = E + E~+ E", where E is the one-dimensional bundle tangent to the 

flow, and there are constants C,A > 0 such that 

(a) 1104',(o)11----< Ce-~'ll v II for v E E ' ,  t > O, 

(b) II (v)ll =< Ce -~' II v I1 for v E E ", t > O. 
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A hyperbolic set A is called basic if 

(a) the periodic orbits of ~b, I are dense in A, 

(b) 4', IA is topologically transitive, 
(c) there is an open set U D A with A = n,~_~ 4~,u. 
We shall be interested in the flow ~b, : A---~ A which is essentially the case of an 

Axiom A flow. The flow ~b is called (topologically) weakmixing if there is no 

non-trivial solution to F~, = e'°'F, where F E C(A) and a > 0. 

A special case of an Axiom A flow is a geodesic flow on (the unit tangent 

bundle TIM of) a compact surface M of constant negative curvature, r = - 1, 

say. (Here M is topologically a g-holed torus, g _-> 2.) 

The flow ok, :TIM---~T~M is defined by choosing for each (x,v)E TIM the 

unique geodesic y:R---~M with (y(O),~(O))=(x,v) and taking ~b,(x,v)= 

(3'(t),~,(t))E T~M. That the geodesic flow is a weak-mixing Axiom A flow (in 

fact Anosov) of entropy h(~b)= 1 is shown in [1]. 

For a geodesic flow ~b a closed ~b-orbit in TiM projects down to a closed 

geodesic 3' in M of length 1(3'). Furthermore, there is a one-one correspondence 

between closed geodesics and free homotopy classes for M. 

We want the word length of a closed geodesic to reflect the number of 

generators of the fundamental group in the corresponding free homotopy class. 

To avoid ambiguities we choose to fix a choice of generators for the covering 

group. This gives a canonical copy of the surface in the Universal cover called 

the fundamental domain R (bounded by the isometric circles of the generators 

cf. [13]). A closed geodesic is said to have word length w(1") if its lift to the cover 

intersects w(z) copies of R (generated by the covering group). 

A canonical example of an Axiom A flow can be constructed as follows. Let A 

be an irreducible k x k matrix with zero-one entries and define 

We define a metric on ZA by 

d ( x , y ) = , ~ ®  21hi 
w h e r e e ( x , , y , ) = J 1  if x , = y , ,  

L0 otherwise. 

With this metric YA is a compact zero-dimensional space and define a 

homeomorphism o':ZA ---~E,~, called a subshift o/finite type, by (trx), = x.+l. Let 

::Z,~ ~ R ÷ be a strictly positive HSIder continuous function and define 

= {(x, t) v , ,  x R 10 ---- t _-</(x)} 
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where (x, f(x))  and (crx,0) are identified. The suspended [low o,.~.A-r"cr---~E~ is 

defined locally by cr[(x, r) = (x, r + t). 

PROPOSmON 3. (Bowen) (i) Any  Axiom A flow restricted to a one- 

dimensional basic set is conjugate to a suspended [low, and vice versa [4]. 

(ii) For any Axiom A flow restricted to a basic set ck :A---~A there exists a 
suspended ]tow err,: E ~  ~ and a bounded-one continuous surjection ¢r : 2 ~  A 
such that ~b,zr = ¢rcr~ [5]. 

For a geodesic flow it is possible to choose the suspended flow crr so that a 

closed or-orbit {x, crx . . . . .  o,"-Jx} corresponds to a closed geodesic y with both 

l ( y ) = [ " ( x )  and ~o(y)= n [20], [16]. 

For an Axiom A flow ~b :A---*A of topological entropy h = h(~b) let ~" denote a 

closed ~b-orbit and let ,~(r) be its least period. For t > 0 ,  let ¢r(t)= 

Card{r l exp h)t (r) =< t}. 
We write [ ( t ) ~  g(t) if [( t ) /g( t ) -~ 1 as t--~ + oo. The following was proved in 

I151. 

PRoPosmozq 4 (Prime orbit theorem). For any weak-mixing Axiom A ]tow 

(restricted to a basic set) rr(t) ~ t/log t. 

The above proposition is analogous to the prime number theorem (even up to 

the use of a zeta function in its proof). 

REMAm¢. A version of Proposition 4 was originally proved by Huber for 

geodesic flows on compact surfaces with K = - 1 [13]. In fact, in this special case 

he showed that there exists 0 < 8 < 1 with 7r(t)= li(t)+ O(t~). (The value of 8 is 

intimately connected with the geometry of the surface M.) 

§4. Uniform distribution and closed orbits 

Continuing the analogy between primes and closed orbits alluded to in section 

3 we consider those a for which (a expha(z )  (mod 1)) is not uniformly 

distributed. 

Let 0 < 8 < t and define 

q)~(t) = sup{Cardlr [r < exp hA (1") < r + 8] 10 <_- r < t - 8}. 

That is, ~s( t )  is the maximum amount of clustering of exp hA (~-) =< t in intervals 

of length 8. We consider below the extent to which this clustering effects the size 

of the exceptional set E = { a l ( c t e x p h , ~ ( r  ) (mod 1)) is not uniformly 

distributed}. 
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PROPOSITION 5. (a) If  there exists e > 0  such that for some 8 > 0 ,  O~(t) '~ 

t/(Iog t) '÷~ then E has zero Lebesgue measure. 
(b) If there exists 0 <  0 < 1 such that for some 8 > 0 ,  Os(t) ,~ t v, then the 

Hausdorff dimension of E is bounded above by O. 

PROOF. (a) This is a classical result due to Weyl [25] (cf. [2]). 

(b) Our proof borrows ideas from [8]. 

We index the closed orbits such that A (r~) <= A (~'2)-<-"" • Choose integers l, k 

(with k > 0) and 8 > 0 and define 

F~.~- F~ {~ Ilfk(a)J> 8k} where fk (a)=f~(a , l )=  ~ e(laexphA(~'j)). 
i=l 

We want to estimate the size of F~. If O8(t)=< Cot °, for t > 0 (for sufficiently 

large Co), then for n > 0  we have O"~(t)_---nCot e. We can now estimate 

.=, fo e(la[exph)t(r,)-exph,~O',)l)da 

k 

--< ~ min{1,2/[2~rllex p h ; t ( r j ) - e x p  hX(r,)[]} 
Li= l  

(4.1) 
<~ (log k )k e+' 

k °o+t for any 0 < 0o< 1. 

In particular, the Lebesgue measure of F~ is of order k -°-°o). 

We next want to construct a cover F6 subject to certain constraints. Choose 

"0 > 1; then since, by Proposition 4, ~ r ( t ) -  t/log t we have C = C ( r / ) >  0 such 
that e x p h A ( r , ) =  Cr" [10]. This estimate allows us to write 

(4.2) I df /d,  I <- 2 z d C ~  j" <- 27tiC. k "~÷'. 
l=l 

For any Xo E F~, (4.2) gives that we can choose intervals about Xo, contained 
wholly in F~/2 D Fs, of length greater than 

2. (Sk/2)/(2~IC)k "+' >> k-". 

Furthermore, the above condition (4.1) on F~/2 restricts the size of such intervals 

to have maximum length of order k-°-eok 

Thus, we can cover Fs by N~ = Ne(l,k) such intervals of lengths lj .... ,IN 

where 

N~ • k-~ <~ k-('-~o), i.e. N~ <~ k ~-(,-e+). 
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It follows from convexity of t--> t p, for 0_-< p < 1, that 

/ k -°-" '  )" 

where e = T / ( 1 - p ) - ( 1 - 0 o ) .  In particular, this exponent is negative if # < 

1 - (1 - 0o)/7/. 

Introduce 

+ ~  + ~  + ~  

s = u u n u '  Fam, l/r~ 
I = ~  r = l  #~[l]+rm=q 

where am = [exp(m/log m)]. Using the above construction we have a cover ~ (of 

arbitrarily small size) for which 

(d iamC) p ~  ~ 1 ~-p.r 5 - p . e x p - ( e m / l o g m ) <  +oo. 
CE~g I,r 

m~--IIl+r 

Since E C S we conclude that H D ( E ) =  < 1 - (1  - 0o)/~/. Because 0o> 0 and 

7/> 1 can be chosen arbitrarily, the result follows. 

COROLLARY 5.1. (a) If there exists k > 2 for which at ( t )=  li(t)+ O(t/(Iog t) k) 
then E has zero Lebesgue measure. 

(b) If there exists 0 < 0 < 1 for which at(t) = li(t)+ O(t °) then HD(E)  <- 0. 

It is illuminating to consider the following simple example: 

EXAMPLE. Let ~ = H_+: {0,1} and define the function f : E - o R  by 

log2 if xo= 0, 

f ( x ) =  Iog(3/2) if x o = l .  

For the suspended flow a t, which has entropy h(trt) = 1, the sequence 

(expA(r)) takes values 3"+"/2"7 n,m > 0, with multiplicity (",+"). Furthermore, 

there exists no choice of 0 < 0 < 1 for which 7r(t) = t/log t + O(t°). However, by 

choosing 6 > 0 sufficiently small and appealing to Stirling's asymptotic formula 

for factorials we get 

• s(t) <~ t ' / ( log t )  '/2 where e = Iog4/Iog(9/2). 

Finally, we remark that it is possible to find uncountably many 0 < a < 1 for 

which (a expA(r)  (rood 1)) is not uniformly distributed (such ct may be 

constructed through their triadic expansions (cf. [9])). 
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We cannot ask similar questions regarding uniform distribution with A(z) 

replacing exp hA (7) since the asymptotic rate of growth means that no sequence 

(pA0") (rood 1)) is uniformly distributed for any p > 0. However, for geodesic 

flows on compact surfaces of constant negative curvature we have associated to a 

geodesic y not only its length l (y)  but also its word length to(y). 

PROPOSITION 6. Let W, be the set of all closed geodesics of word length 
to (y) = n and let p > O. Define I~. to be the (purely atomic) probability measure on 

the unit interval formed by equidistributing measure over the fractional lengths 
(pl(y)) of pl(y),  for y E W,, i.e. 

l ~ 8(p.v)). 
/~" = C a r d  W. ~ w -  

Then I~, converges to Lebesgue measure in the weak* topology. 

PROOF. Using symbolic dynamics this proposition reduces to a result on 

suspended flows [20], [16]. From the remarks in section 3 we have that W. 

corresponds to closed o-orbits of period n and for 7 ~ W. corresponding to 

{x, trx . . . . .  tr"- 'x} we have l ( y )=f" (x ) .  Furthermore, for k E Z\{0}, 

(4.3) e(kx)dl~.(x)~ ~, e(kf"(x))/Card{x [~r"x =x}.  
) t r n x  = x  

However, from [17] it follows that the right-hand side of (4.3) tends to zero as n 
increases. 

REMARK. By analogy with a result of Siepinski [21] for primes we have the 

following corollary to Proposition 6: Given any finite sequence ao . . . . .  ak-, E 

{0,1 . . . . .  9}, a v e 0 ,  there exist infinitely many geodesics for which the first 
k-terms in the decimal expansion of [exp al(y)]  are a~ . . -  a~ (for any a > 0). 

REMARK. For the modular surface the values expl (7  ) are given by m2+ 

(m2-1/4)"2=2m2+2+O(1/m2),  m>- l  [ l l] ,  and defining E as before, 
HD(E)  _<- 1/2. 

REMARK. Another device for studying lengths of closed orbits is to consider 

the limit points S of the sequence Iog(x.÷,-x.)/ logx. where x. =exphA(~'). 

This gives an indication of the size of gaps which can occur between successive 

x.. (If we take x, to be the nth prime number then the limit points are bounded 

above by 7/12.) For the modular surface we have more exact knowledge of orbit 

lengths and S = { - 0% 1/2} (where - ~ arises from distinct orbits with the same 
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lengths). If we consider a locally constant suspended flow whose height function 

takes two values a and /3 with a/13 algebraic, then Roth's theorem for 

diophantine approximation of algebraic numbers allows us to obtain a lower 

bound on 0 < exp(ka + l~)h for k, l = O(N) and thus prove that { - o0, 1} C_ S. 
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